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1. INTRODUCTION

The Appalachian region of the eastern United States continues to be an important source of fossil fuel
for energy demands within the region and beyond. Despite the volatile nature of the coal industry
sector, Appalachian coal mining remains an important factor in the regional economy (Thompson et al.,
2001), as well as a significant influence on the natural environment. The Appalachian region produced
336 million short tons of coal in 2012, or just under 1/3 of total U.S. production, with production down
slightly in the region compared with previous years (U.S. Energy Information Administration 2013b).
Within the region, surface production of coal accounted for two thirds of total production, while
underground mining contributed about one third of total production (U.S. Energy Information
Administration 2013b). Regional coal resources include primarily steam coal used in electric power
generation, and (to a lesser extent) metallurgical coal used in industrial processes. Coal production is
shifting within the region, as demand for cleaner-burning, lower sulfur coal has risen due to increased
environmental regulation.

The overall future of Appalachian coal resource extraction is increasingly uncertain. There is a complex,
dynamic relationship between the price of coal, the price of competing resources (in particular natural
gas), and potential greenhouse gas emission reduction policies which may reduce the demand for coal.
Coal is subject to increased competition from natural gas as a source of energy for electricity generation,
and may be equaled or surpassed by natural gas in the near future depending on oil and gas prices,
greenhouse gas related policies, coal production costs, and other factors (U.S. Energy Information
Administration 2013a).

Mountaintop removal coal mining has been identified as the main source of land use change across the
central portion of the Appalachian region (Saylor 2008). The environmental impacts of mountaintop
surface mining include impacts on biodiversity, hydrology, human health, and water quality (Palmer et
al. 2012). Recent work has also quantified the current spatial environmental impact of mountaintop
removal mining by relating areal extent of surface coal mining activities to coal production (Lutz et al.
2013). This study combines varying estimates of surface coal mine production (EIA 2012) with spatially
explicit predictive modeling to map potential future surface mining footprints on the landscape through
the year 2035.

The goal of this project was to create a spatially explicit 1km? grid cell model for the Appalachian
Landscape Conservation Cooperative (Figure 1) predicting where surface coal mining is likely to occur in
in a projected future time period, under two different scenarios. To accomplish this goal we combined
GIS spatial analysis, a Random Forests predictive model, and future mining buildout scenarios.

This report provides a detailed methodology of our approach and discussion of our results. The report
has three main sections.

Section 1. Predictor variable selection. A fundamental first step to our project was to select those

landscape variables which can be used to effectively predict the locations of future surface mining.
Critical to our spatial model were the: general geographic extent of coal, physical properties of the coal
resource, and infrastructure related predictor variables (mainly related to transportation/delivery of
coal). Additional spatial inputs used in the model included active surface mine permits and exclusion
areas. The exclusions are areas where surface mining will not occur due to incompatible land uses such
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as developed urban or residential land, water, permanent public and private conservation areas, and
areas which have been extensively surface mined and reclaimed in the last 10 years.

Section 2. Random Forests predictive model and results. We provide a brief overview of why Random
Forests was chosen for this study as well as methods for integrating predictor variables into Random
Forests and model parameters.

Section 3. Predictive mapping: Future surface mining footprint. Here we describe how we sequentially
allocated regional predictions of coal production to the highest probability Random Forests 1km? cells.
Our final output includes mapped layers showing the locations of probable surface mining activity under
low and high coal production scenarios for the year 2035.

All digital and spatial data layers used in this study are available for distribution as well as the Random
Forests code parameters for R.
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Figure 1. Appalachian Landscape Conservation Cooperative (LCC) boundary.
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2. METHODS

2.1 PREDICTOR VARIABLE SELECTION

Variables used to predict the likelihood of surface mining in this study included general properties
(Energy Information Administration coal supply region, Environmental Protection Agency mountaintop
removal region), physical properties of the coal resource (coal geology type, sulfur content, ash content,
and BTUs), and infrastructure related predictors (network distance to existing coal fired power plants,
network distance to intermodal transportation facilities, network distance to inland ports, distance to
rail, human population density). All grids were calculated with a cell size of 1km? using ESRI ArcGIS 10.1
software, with analysis extent limited to the Appalachian LCC. For distance grids (distance to power
plants, distance to railroads etc.) distances were calculated to features outside the Appalachian LCC
prior to limiting grids to the study area boundary.

Predictor variables:

Energy Information Administration coal supply region

The U.S. Department of Energy Administration (EIA) has published maps for generalized coal supply
regions of the United States. The Appalachian LCC includes four distinct coal supply regions: Northern
Appalachian, Central Appalachian, Southern Appalachian, and Eastern Interior/lllinois (portion) (Figure
2).

Environmental Protection Agency mountaintop removal region

The U.S. Environmental Protection Agency has designated portions of West Virginia, Kentucky, Virginia,
and Tennessee as the mountaintop removal/valley fill mining region (Figure 3) (U.S. Environmental
Protection Agency 2005). Project reviewers suggested that the mountaintop removal region be used as
a categorical predictor variable as a surrogate for areas appropriate for future surface mining due to
favorable overburden and seam thickness within this region.

Coal geology type

Generalized coal field boundaries were derived from a map of coal fields of the United States at a
1:5,000,000 scale (U.S. Geological Survey 2008). Generalized coal fields include areas with known coal-
bearing geology, and were used to limit the extent of predicted future mining probability within the
study area (future mining was limited to areas within mapped coal fields).

Within this coal field boundary, we also obtained state level geologic maps from datasets compiled by
USGS for U.S. states (U.S. Geological Survey 2013). Next, the generalized state level geologic maps were
classified into geologic units containing coal, and those without coal. Finally, the geologic units
containing coal were further cross-referenced into 17 different geological units region wide based on
generalized lithology and formation provided in general state level geological labeling among different
states reference materials. The cross referencing process was necessary due to inconsistencies and
labeling among the different states. This was completed using a chronostratigraphic correlation chart
(Ruppert et al. 2010) (Figure 4). Formations were grouped based on geologic age so as to produce the
17 categories of similar lithology that are not impacted by state boundaries. The results of this
correlation were assessed by visualizing the data at state borders (Figure 5).
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Sulfur percentage of coal

The sulfur content of coal is one aspect of coal quality. Coal contains varying amounts of sulfur, and
when coal is burned, the sulfur (combined with oxygen) will form sulfur dioxide, a greenhouse gas.
Restrictions on sulfur dioxide emissions from power plants have made the relative sulfur content of coal
an important consideration in the economic viability of different coal resources (with low sulfur coal
generally being more desirable). The percentage of sulfur content in the coal (Figure 6) was interpolated
using borehole data (x, y, z) from the USGS Coal Quality database (Bragg et al. 1997). Prior to
interpolation, borehole data were limited to samples taken at the surface (underground or deep mine
samples were excluded). Underground and borehole samples (excluded) were identified by sample
depth values and/or descriptive text in the comments field in the sample database. Surface samples
were also identified by values in the comments field indicating samples were taken at road cuts, pits,
and strip mines. “The data source of borehole locations contains a comprehensive analyses of more
than 13,000 samples of coal and associated rocks from every major coal-bearing basin and coal bed in
the U.S. The data in the coal quality database represent analyses of the coal as it exists in the ground.
The data commonly are presented on an as-received whole-coal basis.” (Bragg et al. 1997). While
different coal seams may be encountered with each of the borehole sites, an overall sulfur percentage is
assumed for each site. Boreholes were targeting different coal beds, and the assumption was made that
the coal seam being sampled at that location would provide a representative estimate of sulfur content
for that area. Or, the coal seam being sampled at the borehole would be the coal seam being mined in
that area.

The interpolation process for sulfur, ash, and BTU followed standard geostatistical kriging steps outlined
by Johnston (2001). They included first exploring the data for normality, examining trends and the
semiovariogram, and testing model output runs until a satisfactory root mean squared error and mean
standardized error from the cross validation prediction errors were found.

For sulfur, an ordinary kriging model was applied and anisotropy examined to account for directional
influences. This was useful especially since the coal geology follows unique ridge and topographical
synclines. A total of ten lags were applied with a size of 20,000 to best fit the distribution of the input
point locations. The search neighborhood was standard sized with a maximum of 5 neighbors. The
results for sulfur cross validation indicated an accurate predicted surface with a root-mean-square
standardized prediction error of 1.009 (a value closer to 1.0 is preferred).

Ash content of coal (ash yield)

Ash content of coal is also related to relative coal quality. Ash content is related to the portion of coal
that remains after combustion. Ash yield was also obtained from the USGS Coal Quality database (Bragg
et al. 1997) and was also interpolated using methods similar to those used for sulfur content. Ash
content is shown in Figure 7.
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For ash, again ordinary kriging was applied with anisotropy examined for the directional influences
which indicated an improved fit with an angle of 44.6 and 45 tolerance. The lags used were different for
ash — 12 total with a lag size of 12,000. The search neighborhood was standard sized with a maximum of
5 neighbors as with sulfur. The results for sulfur cross validation indicated an accurate predicted surface
with a root-mean-square standardized prediction error of 1.001.

BTU content

British thermal unit (Btu) content of coal is related to the amount of energy provided by a given amount
of coal. Btu content of coal per Ib. was derived from the USGS Coal Quality database (Bragg et al. 1997)
using methods similar to ash and sulfur content. Btu content is shown in Figure 8.

For the BTU interpolation, a simple kriging model was applied with a log score transformation to make
the variances more constant throughout the study area and bring the data closer to being normally
distributed. Anisotropy was applied to account for direction in the semivariogram and covariance. The
preferred angle was 32 with a 21.4 degree tolerance. Twelve lags with a size of 15,000 was found to fit
the model best with the averaged data points. Again here, the standard neighborhood search was used
with a maximum of 5 neighbors. The fit for BTU was not as well as ash and sulfur with a root-mean-
square standardized error of 0.887.

Distance to coal fired power plants

Existing coal fired power plants were identified using information published by the U.S. Energy
Information Administration, based on form EIA-860 “Annual Electric Generator Report” (U.S. Energy
Information Administration 2011a). The locations were determined using latitude/longitude
coordinates provided by SourceWatch (2013) and shapefiles provided by Energy Information
Administration (U.S. Energy Information Administration 2012a). We identified a total of 318 existing
power plants as of 2011. We then removed a total of 92 of these plants that are scheduled for closure
between 2013 and 2020, according to news reports and accounts compiled by Source Watch (2013). An
additional 25 new coal fired facilities (including power plants, cogeneration facilities, coal to liquids
plants) were added to the final dataset that are proposed, planned, in permitting, or under construction
for this area as noted by Source Watch, (2013), the Sierra Club (2013), and National Energy Technology
Laboratory (2012). For our final predictor variable, we calculated distance along a highway network
(ESRI 2012a) to 251 coal fired power plant facilities (226 existing, 25 new). Distance along the highway
network was initially calculated along 1km? cells along the actual highways, and was then extrapolated
out to cover all cells within the Appalachian LCC using an inverse distance weighted interpolator (Figure
9).

Distance to intermodal transportation facilities

Intermodal transportation facilities are locations where freight may be transferred between different
modes of transportation (i.e. truck to barge, truck to rail, etc.). Intermodal facility point locations were
obtained from the National Transportation Atlas Database, and were then limited to all facilities except
ports, which were mapped separately (Bureau of Transportation Statistics 2011) (Figure 10). Distance to
intermodal facilities was mapped along the highway network, then extrapolated out to all cells within
the Appalachian LCC.
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Distance to inland ports

Inland ports were also obtained from the National Transportation Atlas Database (Bureau of
Transportation Statistics 2011) and were limited to those ports handling coal and coal related
commodities (Figure 11). Distance to ports was mapped along the highway network, then extrapolated
out to all cells within the Appalachian LCC.

Distance to rail

According to U.S. Energy Information Administration domestic coal distribution statistics, 56% of coal
produced by the ten coal-producing states in the study area was distributed using rail in 2011 (U.S.
Energy Information Administration 2012a). In addition, a total of 29% of coal distributed domestically
was moved by river (barges), with a total of 13% was transported by truck. This implies that proximity to
rail, river, and trucking related loading facilities may be an asset in location of mining activity. We found
that 20% (10/49) of randomly selected surface mine permits in a 5 county area in WV have existing
loading facilities which enable coal to be placed on rail cars for distribution. Figures 12a and 12b show
examples of facilities which are adjacent to the rail lines for loading coal. Mining related facilities (for
loading coal onto rail cars) are not necessarily limited to locations at end points of rail lines. Mine
loading facilities can also be found at any point along rail lines, not just at the end points or at spurs.
Mapping distance to existing rails captures more potential locations for access to rail lines from coal
mining permit locations, rather than limiting the rail feature dataset to endpoints only of existing
railroads.

Locations of railroads were acquired from the Bureau of Transportation Statistics U.S. National
Transportation Atlas railroads layer, at the 1:100,000 map scale (ESRI 2012). Distance to nearest rail line
was mapped as Euclidean straight line distance across the Appalachian LCC (not limited to distance
along network) (Figure 13).

Population density

Population density was calculated across the study area using 2010 Census block group data, and was
then converted to raster format, 1km? cell size (ESRI 2012) (Figure 14). Generalized land cover from the
National Land Cover Dataset for 2006 was also considered as an input, but was omitted from the final
model.
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Figure 2. U.S. Energy Information Administration (EIA) coal supply regions used in this project.
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Figure 3. U.S. Environmental Protection Agency mountaintop removal/valley fill region (U.S. EPA 2005).
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Figure 4. Chronostratigraphic correlation chart for cross referencing state level geological maps.
(Ruppert et al. 2010).
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Figure 5. Coal-bearing geological units, as grouped for purposes of this study.
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Figure 6. Data interpolated from USGS COALQUAL database points: Sulfur content of coal.
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Figure 7. Data interpolated from USGS COALQUAL database points: Ash yield of coal.
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Figure 8. Data interpolated from USGS COALQUAL database points: BTU content of coal.
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Figure 9. Power plant locations (coal fired), and distance to power plants along road network.
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Figure 11. Inland ports, and distance to ports along road network.
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Figure 12 a. Bandmill no 1. Mine, Boone County, WV.

Figure 12b. Hobet mine, on site rail loading facility, Boone County, WV.
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Figure 13. Railroads, and distance to railroad (Euclidean distance).
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Figure 14. Population density (persons per square mile, 2010).
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Figure 15. Active surface mining permits from state agency datasets.
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Additional spatial data development

Other considerations

Other factors considered to be important for new surface mining activity included past and existing
mining, stripping ratios (overburden, coal bed thickness), coal reserves remaining, surface ownership
patterns, and coal quality as related to market demand. Each of these factors were specifically
mentioned by reviewers in various stages of this project, and were also mentioned in the Environmental
Impact Statement for mountaintop mining in the Appalachian region (U.S. Environmental Protection
Agency 2005). Ultimately, these factors were not included (directly) in the final modeling process, after
investigation of available datasets and data quality. Location and extent of past mining were not
uniformly available for the entire study area, as mining datasets from individual states varied greatly in
quality. Data related to stripping ratios (overburden, seam thickness) were available for some coal
seams (U.S. Geological Survey 2000) and states in the study region (lllinois (lllinois State Geological
Survey 2012); Indiana (Indiana Geological Survey 2000); West Virginia (West Virginia Geological and
Economic Survey 2013); Virginia (Virginia Tech 1999) but not others. Remaining coal reserves are
available on a county-by-county basis for some states (see West Virginia Coal Association 2012 for
example) or on a regional level from the U.S. Energy Information Administration, but reserve data are
not consistently published at a detailed enough spatial scale for the region in order to be included in the
project. The limitation of the model to surface mining activity only (rather than surface and
underground combined) also caused some difficulty in obtaining suitable datasets.

For surface land ownership patterns, it has been suggested that the differing nature of land ownership
among states may be related to surface mining — specifically that surface mines of eastern Kentucky are
characterized by smaller land owners, while surface mines in neighboring southwestern West Virginia
are more likely to be owned by larger corporate land owners (U.S. Environmental Protection Agency
2005). Based on a quick cross reference with existing permit data, we did not find this to exist as the
average permit size in Kentucky was larger than the average permit size for West Virginia. In any case,
land ownership data for such a large study region is nearly impossible to assemble, particularly in light of
the relatively coarse spatial scale of this work (1km? cell size). We also did not have access to adequate
mineral rights data for the entire study region, another important consideration.

Active surface mine permit locations

The previously listed independent variables were analyzed with the dependent variable of location of
active surface mine permits. The centroids of each permit were calculated for the model runs. Surface
mining permit locations were obtained from individual state agencies (Table 1) for the ten coal-
producing states within the study area (Figure 15). Mining permits were further limited to active surface
mining permits only by excluding underground mines and permits associated with inactive or historical
mines. In certain states, if permit status (active/inactive) was not indicated, permits were limited to
those with dates from the year 2000 to the present only, in an attempt to limit analysis to current, active
mines.
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Table 1. Data sources and extent: active surface coal mine permits, by state.

State Permit Data Source Active Surface Active Surface
Polygons (n) Permit Area
(km?)

Alabama Alabama Surface Mining 1073 257.8
Commission (2013b)

lllinois [llinois State Geological Survey 18 0.1
(2012)

Indiana Indiana Department of Natural 33 331.8
Resources, Division of Reclamation
(2013)

Kentucky Kentucky Division of Mine Permits 1736 2594.5
(2012)

Maryland Maryland Department of the 13 6.3
Environment (2012)

Ohio Ohio Department of Natural 309 423.2
Resources (2013b)

Pennsylvania  Pennsylvania Department of 626 405.6
Environmental Protection (2012)

Tennessee Office of Surface Mining 99 85.4
Reclamation and Enforcement
(2013)

Virginia Virginia Department of Mines 90 1.6
Minerals and Energy (2013)

West Virginia WV Department of Environmental 1524 1022.3

Protection (2013)

Exclusion areas

In addition to the above mentioned predictor variables and surface mine permit locations we also
integrated spatial data sets as “exclusions” or areas where surface coal mining could not occur. Areas
excluded from our predictive modeling of future surface mining include permanent conservation lands
and areas with existing land uses that are not conducive to mining activities (urban and developed lands,
water) based on the 2006 National Land Cover Dataset (Fry et al., 2011). For purposes of this work, we
considered permanent conservation lands to be (in most cases) lands compiled in the Conservation
Biology Institute’s Protected Areas Database (Conservation Biology Institute 2012) with Gap Analysis
status 1 or 2. Some adjustments were necessary for erroneously classified areas. Conservation lands
with Gap Analysis status 1 and 2 (U.S. Geological Survey 2011) generally indicate areas with permanent
protection from land use conversion and/or management plans designed to limit disturbance and may
include national parks, national wildlife refuges, state parks and preserves, and U.S. Forest Service
wilderness areas (among others), although further assessment of outstanding mineral leases on these
tracts may result in their re-inclusion in the area where mining may occur. In all, 57,185 km? throughout
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the study area (9.6%) was excluded due to land use restrictions, while 14,366 km? of the study area was
excluded due to presence of conservation lands (2.4%) (Figure 16).

We also identified areas with an extensive recent history of surface mining for exclusion from future
mining, as we are assuming these areas to be “mined out”, meaning they will not be surface mined
again in the future. Mined out areas were identified as cells within current active surface mine permits
(Figure 15) that were classified as Barren land cover in the 2006 National Land Cover Dataset (Fry et al.
2011). This method ensured we were capturing large contiguous areas of previous surface mining, and
not newly opened mines (since we were using 2006 land cover). By using this method, we excluded
mining on a total of 567 km2, or 12% of the area contained within active surface mine permits.
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Figure 16. Exclusion areas for modeling process — conservation lands, land use restrictions, past mining.
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2.2 RANDOM FORESTS PREDICTIVE MODEL
Background

The machine learning algorithm Random Forests was used to produce a probability score for each of the
1km? grid cells within the Appalachian LCC containing coal. A higher probability score indicates a greater
likelihood of future mining. This algorithm offers many advantages: it does not require any assumption
of data distribution, it can handle categorical predictor variable and predictor variables with different
scale, it runs efficiently on large datasets, it is robust to outliers and noise, it estimates the importance
of the predictor variables in the model, and it only requires two user-defined parameters (Cutler et al.
2007) (Lawrence et al. 2006), (Peters et al. 2007), (Pino-Mejias et al. 2010), (Prasad et al. 2006).

Random Forests functions as an ensemble (multiple) of decision trees. A decision tree is based on a
hierarchical concept in which decision rules are applied to segment the data using recursive partitioning
into more homogeneous subsets, producing rules that define classes. A single decision tree does have
shortcomings; for example, changes in the training data can induce a high variance in the classification
and result in low classification accuracies. Also, they can over-fit against the calibration data. Ensemble
methods, including boosting, bagging, and Random Forests, have been developed to address these
shortcomings (Breiman 2001).

Random Forests functions as an ensemble (multiple) decision trees as a means to improve upon the
accuracy of a single tree. Instead of using all the training data in each tree, a bootstrap sample (or
random subset) of the training data is drawn for each tree. This is known as boosting. Also, it uses only
a random subset of the predictor variable in each tree instead of all variables. This is done to decrease
the correlation between trees, which decreases the generalization error. Random Forests allows for a
group of weak classifiers to function as a strong classifier.

Because Random Forests only uses a subset of the data in each tree (the bootstrap sample), some of the
data are withheld. The withheld data are called out-of-bag (OOB) data. In order to assess the
importance of a predictor variable in the model, the variable is withheld and the model is rerun without
the variable present. The OOB data are classified, and the mean decrease in accuracy (once the variable
is removed from the model) for the classification of the OOB data provides an estimate of the
importance of that variable.

Random Forests differs from other ensemble methods based on how the ensemble is generated. Also,
instead of using all the predictor variables in each tree, only a subset of the variables is used, and the
best variable from the subset is selected for splitting the data at each node. This results in a decrease in
the strength of a single tree; however, the correlation between trees is reduced. As a result, the
randomized predictor variable selection reduces the generalization error (Breiman 2001).

Application of Random Forests in this project

In order to predict the probability of surface mine occurrence in a given pixel, eleven predictor variables
were used: population density (floating point raster grid); distance to railways, ports, power plants, and
intermodal transportation facilities (integer raster grids); coal-bearing geology type (categorical raster
with 17 categories); EPA mountaintop mining removal region (categorical raster); EIA coal supply region
(categorical raster); and percent sulfur content, BTU content, ash content (floating point raster grids).
All grids were generated at a 1 km? raster resolution.
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In order to run the Random Forests algorithm, presence (surface mining) and absence (no surface
mining) data are required. For presence data surface mine permit centroids were used. Only mines
permitted after the year 2000 were considered. In order to create more variability and decrease
correlation in the model, we generated five separate sets of absence data. First, random points were
generated across the coal extent of the study area, and all random points occurring within a mine
permit or within 0.5 miles of a surface mine centroid were removed. Five separate random samples
were drawn for the larger set. For each set of training data we used an equal number of presence and
absence points (5,165 of each and 10,330 total). The same presence data were used in each set with a
different set of absence points.

Each training point was labeled as presence (with an existing surface mine permit) or absence. All of the
predictor variables were appended to the points from the raster cell at that location using the software
tool Geospatial Modeling Environment (http://www.spatialecology.com/gme/).

The data were then read into the statistical package R. The Random Forests algorithm was executed
using the RandomForest package. A separate model was generated for each of the five training sets.
For each model 1,000 trees were generated and the number of randomly selected predictor variables
sampled in each tree was set to 3 (the square root of the number of bands, which is the default setting).
All five of the models were then combined to produce a model containing 5,000 trees.

Using the final combined model, all 1 km? pixels in the coal extent study area were classified using the
Random Forests model. The probability of the pixel being a surface mine was reported, and a raster grid
output was generated.

The resulting (0 to 100) prediction is shown in Figure 17. As estimated by the out-of-bag mean decrease
in accuracy, the coal geology type and the sulfur content were found to be the most important predictor
variables in the model, though all variables contributed (Figure 18). In Random Forests modeling, the
out-of-bag error estimate is an internal measure of the random Forests “tree” based on samples not
used to build a particular classification tree (Breiman 2001). For each training dataset, the out-of-bag
error estimate was around 15% and the misclassification of presence and absence points were evenly
balanced. Plotting the error rate against the number of trees generated suggests that 1,000 trees per
set is more than ample to stabilize the result.

The code used for running Random Forests in the statistical program R and additional output from the
Random Forests model are provided in the Appendix section of this report.
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Figure 17. Surface mining probability from Random Forest model results. Areas in red have highest
probability of new surface mining activity, areas in green have the lowest. Model extent was limited to

the known extent of coal in the region (USGS coal fields).
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2.3 PREDICTIVE MAPPING: FUTURE SURFACE MINING FOOTPRINT

In order to map future potential surface mining activities on a landscape scale, we used results from the
probabilistic Random Forests modeling of surface mine potential along with regional-level estimates of
future coal mining production for the years 2012 through 2035.

Regional coal production estimates for the four EIA coal supply regions (Northern, Central and Southern
Appalachians, Eastern Interior/lllinois) were obtained using various coal production scenarios from the
EIA’s Annual Energy Outlook (U.S. Energy Information Administration 2013a), Table 68 Annual Energy
Outlook coal production by region and type. Values were obtained for two different EIA economic/coal
production scenarios for comparison: a low coal production scenario and a high coal production
scenario. The low coal production scenario (“GHG25+low gas”) predicts the lowest future coal
production of any of EIA’s 28 total scenarios, due to very restrictive greenhouse gas emissions policies
and low prices for competing resources of oil and gas. The high coal production scenario (“low coal
cost”) predicts the highest coal production due to lower costs for coal mining wages, transportation, and
mine equipment (leading to increased coal production).

EIA coal production estimates provide total production estimates only (surface and underground
combined). We converted future production projections to surface projections only by multiplying each
production total by the percentage surface according to the following regional figures (based on 2010-
2011 production data in the Annual Energy Outlook): Northern Appalachians: 20.08% surface, Central
Appalachians: 48.68% surface, Southern Appalachians: 40.06% surface, Eastern Interior/Illinois:
30.72% surface. Surface mining production estimates from the year 2012 through the year 2035 were
then summed to produce a total cumulative surface coal production value for each region.

In order to estimate surface area impacted by coal mining activities, we required a numeric relationship
between surface mine production amounts and a corresponding area disturbed. We initially proposed
using current active surface mine permit data along with recent production statistics in order to derive a
production to area ratio. However, single mines may produce coal for extended periods of time, and
this method would not adequately capture the entire life cycle of a mine. In addition, mapped mine
permit polygons may include areas that are not actually disturbed during surface mining, so the actual
disturbed area may be much smaller than mapped permit area. A recent government study concluded
that mapped mine permits do not offer an accurate way to estimate area disturbed by surface mining,
based on current permit database and mapping methods used in WV and KY (GAO 2009). Instead, Lutz
et al. (2013) developed a regression model to estimate tons of coal produced per unit areal disturbance
for 47 counties in southern WV and eastern KY. The model was based on total area of surface mining
disturbance from 1985-2005 (at 5 year time intervals), compared with surface coal production statistics
for corresponding time period. Lutz et al. (2013) estimated that 1 ton of coal equates to 0.87m?2 of
surface disturbance. For the current study, this figure was converted to 1.15 million tons of coal
produced per square kilometer of surface land disturbance.

Future surface mining scenarios analyzed included low coal production and high coal production models
(US Energy Information Administration 2013a) for the years 2012-2035. For each scenario, we created a
new map layer showing potential locations for future surface mining activities on a cell-by-cell basis
using a 1 km? grid for the study area. Using the figure of 1,150,000 short tons per km?, we allocated
future mining production on a cell-by-cell basis within each EIA region first to those cells with the
highest future mining probability, then continuing to cells with lower future mining probability, until the
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total amount of future production for a particular scenario and region was allocated. Prior to allocation,
adjacent cells with identical mining probability values were grouped together to ensure that contiguous
areas of high mining probability were preserved in the results (rather than assigning “new” mining to

single cells). Cells containing urban or built up land, water, conservation lands, and centroids of existing
mining permits were excluded (masked out) prior to build-out analysis as described earlier in this report.
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3. RESULTS

3.1 RANDOM FORESTS MODEL (PROBABILITY OF FUTURE SURFACE COAL MINING)

The final Random Forests model scenario included a total of ten predictor variables: the continuous
variables of coal ash content, coal BTU content, distance to railroads, distance to power plants (along
road network), distance to ports (along road network), distance to intermodal transportation facilities
(along road network), population density, and the categorical variables of EIA region, EPA Mountaintop
Removal mining region, and coal geology type. We considered removing low-performing variables from
the final model, based on variable contribution to the overall result. However, alternative models with
fewer variables did not perform as well as the full model, producing higher classification error rates.
Model significance was tested vs. randomly generated models and was found to be significant with a p-
value of 0.0101.

The final output of the Random Forests model is a pixel based probability of future surface mining
presence. The final probability values were re-scaled from 0 to 100 (Figure 17). Results indicate that the
highest probability of future surface mining is found in the Central Appalachian region, particularly
throughout southwestern West Virginia and eastern Kentucky. Other pockets of higher probability are
found in western Kentucky, central Alabama, and to a lesser extent, north central West Virginia and the
bituminous coal region of Pennsylvania and Ohio.

The total area within each EIA coal supply region with relatively high probability (over 90) is listed in
Table 2. The Central Appalachian region has the highest percentage of high probability areas for the
four regions, while the Northern Appalachian and Easter Interior/lllinois regions have a very small
percentage of their area within high probability — 90% or higher (Figure 19). Note that while the
Northern, Central and Southern Appalachian regions lie completely within the current study boundary
(Appalachian LCC), the Eastern Interior / Illinois coal supply region also includes production in portions
of western and central lllinois and Mississippi that are not included in the Appalachian LCC study area
for this project. Based on the most recent available coal production statistics from 2011 (U.S. Energy
Information Administration 2012a), there are a total of six counties in the Eastern Interior/lllinois region
that produce coal but are located outside of the project study region. For 2011, these six counties
accounted for 11.7% of the total surface coal production for the Eastern Interior/Illinois region (so
approximately 11-12% of coal production in this region will not be accounted for in our model results
and projections).
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Figure 18. Importance of predictor variables measured as out-of-bag mean decrease in accuracy.
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Figure 19. Random forest result — high probability areas (90%+) with high likelihood of future surface
mining.
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Figure 20. Low coal production scenario: Future mining footprint for low coal production model
through 2035 (based on EIA GHG25+low gas price scenario).
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Figure 21. High coal production scenario: Future mining footprint for coal production through 2035
(based on EIA low coal production cost scenario).
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Table 2. EIA coal supply regions, with area of relatively high (90% or higher) probability of future surface coal
mining, based on Random Forests model results.

Region Name Area Area <90 Area >=90 Percent Percent >=
(km2) (km2) (km2) <90 90
Northern Appalachian 68,852 68,385 467 99.32 0.68
Central Appalachian 53,788 49,368 4,420 91.78 8.22
Southern Appalachian 14,455 13,635 820 94.33 5.67
Eastern Interior/Illinois 28,147 28,048 99 99.65 0.35

3.2 PREDICTIVE MAPPING: FUTURE SURFACE MINING FOOTPRINT

Results for future surface mining footprint by the year 2035 are shown in Figures 20 (low coal
production model: GHG25+low gas) and Figure 21 (high coal production model: low coal cost). Total
area (km?) mapped as new surface mining activity is listed by EIA region in Table 3. We also calculated
the percentage of the high probability area (defined for this study as areas with Random Forests model
probability at 90 or higher) affected by new mining for each region. For the low coal production
scenario, all regions except the Eastern Interior/lllinois are predicted to have all new mining footprints
located completely within higher probability areas. For the high coal production scenario, only the
Central and Southern Appalachian regions are predicted to have all new mining footprints found within
higher probability areas.

To meet production estimates for the low coal production scenario, the three Appalachian regions are
each predicted to have all new surface mining development limited to high probability modeled areas
(defined for this project as Random Forests model results of 90% and above). These highest probability
areas (shown in Figure 19) are concentrated in southwestern West Virginia and eastern Kentucky, with a
significant portion in Alabama (Southern Appalachian region). However, surface mine footprints within
the Eastern Interior/Illinois region may need to extend beyond the highest modeled probability areas in
order to meet projected production figures (according to model results, the area required to meet
future coal production in this region has a minimum probability score of 68 (Table 3)). Within this
region, under the low coal production scenario, new mining is modeled to occur in lower probability
areas concentrated within Hopkins, Henderson, Ohio, and Muhlenberg counties in western Kentucky
(Figure 20).

In order to meet the future high coal production scenario, the area associated with future coal
production for both the Eastern Interior/lllinois and the Northern Appalachian regions exceeds the
current high probability area for those regions. In the Northern Appalachian region, in order to meet
high coal production predictions, new mining is modeled to extend into areas with a minimum model
probability of 85 (Table 3). These areas are found scattered across counties in eastern Ohio, western
Pennsylvania, and north central West Virginia (Figure 21). In the Eastern Interior/lllinois region, new
mining is modeled to extend into areas with a minimum model probability of 54 (Table 3). Within this
region, new mining areas are again concentrated in western Kentucky, with smaller amounts in lllinois
(similar to the low coal production scenario).
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Table 3. By EIA coal supply region, total area mapped as new surface mining under differing scenarios (low coal
production, high coal production). High probability areas are those areas with future surface mine probability
from Random Forests model at 90% or greater. Minimum Random Forest probability result for mapped new
mining areas is given by region.

Low coal production scenario High coal production scenario
Region name Mapped  Percent of Minimum Mapped Percent of Minimum
new high probability new mining high probability
mining probability score in (km?) probability score in
(km?) area new mining area new mining
Northern Appalachian 272 58.24 91 776 166.17 85
Central Appalachian 953 21.56 97 1186 26.83 96
Southern Appalachian 103 12.56 99 148 18.05 99
Eastern Interior/Illinois 453 457.58 68 991 1001.01 54

3.3 ASSESSMENT OF RESULTS

In an effort to compare our model results for locations of future surface coal mining activity with
established data, we compare our results with three related sources of data: coal seam level data (coal
availability/thickness), remaining coal reserves, and newly permitted areas.

Coal seam level data

Data on individual coal seams are available from multiple state geological survey agencies. Mapped coal
seam properties include coal seam depth to top of the seam, seam thickness, and overall coal
availability. Mapped properties vary by state and seam.

Within lllinois, the Illinois State Geological Survey has mapped coal seam properties for several of the
state’s prominent coal seams. According to seam-level reports (Treworgy et al. 1999, Treworgy et al.
2000, Korose et al. 2002), most lllinois seams have more limited resources available for surface mining,
with the majority of remaining coal being underground. Of mapped coal seams, the Herrin, Danville,
and Dekoven-Davis seams all have polygons indicating coal available for surface mining within the
Appalachian LCC study area (ISGS 2013). Figure 22 shows surface coal availability for these three seams,
overlaid with predicted locations of new surface mining from this project. There is high correspondence
between areas of mapped availability of surface coal resources with the results of this study, particularly
in Saline County IL. Restrictions to surface coal development listed in the ISGS datasets include depth to
coal seams, unfavorable overburden or stripping ratios, land cover restrictions, and mined out areas,
among others.

Within Indiana, coal availability data (seam thickness, depth to seam) are available for a small number of
coal seams. Figure 23 shows the depth to the Springfield coal seam across southwestern Indiana
(Indiana Geological Survey, 2000). The depth to the coal seam increases from east to west. This
corresponds in general with the results of the current model, which shows increased likelihood of future
surface mining toward the west-central portions of Indiana (Pike, Daviess, Warrick counties) rather than
the extreme western border of the state.
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USGS data on overburden and seam thickness are available for six major producing seams in the
Appalachian (U.S. Geological Survey 2000) and three major seams of the lllinois coal regions (Hatch and
Affolter 2002). Of these seams, three Appalachian seams (Pittsburgh, Upper Freeport, and Fire Clay)
have some areas with less than 200ft of overburden which may theoretically be available for future
surface mining. A comparison of the level of overburden of these three seams with modeled potential
areas for future surface mining (model results) is presented in Figure 24. The model tends to predict
that future surface mining will be concentrated in areas of lower overburden, particularly for the
Pittsburgh seam. Similar results are seen for the three mapped seams in the Illinois region (Baker-
Danville, Herrin, and Springfield coals): the model predicts future surface mining to be more prevalent
in areas of lower overburden (Figure 25).
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Figure 22. Coal availability for Illinois for Danville, Herrin, and Dekoven-Davis seams (surface minable

coal) compared with predicted new surface mining from Random Forest model result for high coal
production scenario.
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Figure 23. Coal availability for Illinois for Springfield coal seams (depth to coal) compared with predicted

new surface mining from Random Forest model result for high coal production scenario
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Figure 24. Comparison of model results (high coal production scenario) with existing data on coal seam
overburden for three coal seams in the Appalachian region.
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Figure 25. Comparison of model results (high coal production scenario) with existing data on coal seam
overburden for three coal seams in the lllinois region.
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Remaining coal reserves data

Comparison of model results with published coal reserve figures indicates close correspondence
between areas of future high surface coal production (from this model) and established coal reserves.
County-level coal reserves (amount of remaining coal) have been published for many of the states
within the Appalachian LCC study area. Comparison of model results for future surface mining
probability may be corroborated with county reserve data for West Virginia, Pennsylvania, Kentucky,
and Ohio.

Within West Virginia, reserve data available from the WV Coal Association (for all types of coal — surface
and underground) (WV Coal Association 2012) indicate that areas mapped as high probability for future
surface mining bear a strong correspondence with counties with high remaining reserves in
southwestern West Virginia (Figure 26). One county modeled to have future surface production lacking
a high amount of reserves, however, was Grant County (in the eastern panhandle). Within
Pennsylvania, high coal reserve counties in the southwestern portion of the state also have high
probability areas for future mining (Figure 26). Pennsylvania coal reserve figures (PA Coal Alliance 2011)
do not include anthracite coal. Kentucky coal reserves (including non-recoverable coal) (Kentucky
Foundation 2013) are shown in Figure 27, and comparison with Ohio coal reserves (surface only) is also
shown in Figure 27 (Ohio DNR 2013a).
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Figure 26. Coal reserves as reported by county, West Virginia and Pennsylvania, compared with model
results (high coal production scenario).
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Figure 27. Coal reserves as reported by county, Kentucky and Ohio, compared with model results (high
coal production scenario).
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Newly permitted areas

Areas of recent surface mine permit activity may also be used to qualitatively evaluate model results.
Areas modeled to have high probability of future surface mining should theoretically be associated with
areas of high current permit activity (newly approved permits, permits approved but not yet started
etc.). Recent permit activity is available for Alabama and West Virginia. Within Alabama, the Alabama
Surface Mining Commission lists recent permit decisions, including renewals, revisions and applications
(ASMC 2013b). Based on information from the ASMC, there are 86 permit polygons within the
Appalachian LCC study area in Alabama that have recent permit activity in 2013 (permit activity includes
renewal, revision or approval). Some permits consist of more than one polygon. Of these 86 polygons,
77 (89.5%) intersect areas of high future mining likelihood (probability over 90 as modeled) (Figure 28.
Table 4). For West Virginia, recent surface permits that are mapped but have not been started yet
(personal communication, Nick Schaer, WVDEP 2013) may also be used in a similar fashion. Within West
Virginia, there are a total of 43 surface mine permits that have been issued but have not yet been
started, and of these, 26 (60.4%) intersect areas of high future mining probability as modeled (Figure 29,
Table 4).

Table 4. For Alabama and West Virginia, detailed summary of mine permits with new/recent activity in relation
to Random Forests (RF) model results.

State Permits/polygons Average RF score for Number of
applicable permits/polygons permits/polygons
intersecting high
likelihood areas (RF

score > 90)
Alabama (permit polygons 86 96.5 77
with 2013 activity)
West Virginia (permits 42 80.2 26

approved but not started)
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Figure 28. Surface mine permits in Alabama with recent permit activity, compared with model results
(high coal production scenario).
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Figure 29. Recent surface mine permits in West Virginia (permits approved but not started), compared

with model results (high coal production scenario).
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4. CONCLUSIONS AND SUMMARY

This project maps future surface mining footprint across the Appalachian region, based on varying
estimates of future coal production. The Random Forests modeling technique was used to predict areas
with high likelihood of future mining. Through the modeling process, we determined that key
determining factors of future mining locations at the regional scale include coal geology type, coal sulfur
content, coal btu content, and distance to transportation related infrastructure. The extent of future
surface mining will vary regionally, with highest probability areas concentrated in the mountaintop
removal/valley fill mining region of central Appalachia.

This study provides a framework for continued surface mine predictive modeling at a more local scale of
analysis. As mentioned earlier, much more detailed information could be used to predict surface mine
activity, particularly in areas with more readily available detailed geological and mining spatial datasets
such as West Virginia and Kentucky. In addition, future focused work in site specific areas may also
consider land ownership and other variables related to topography, access roads, etc. with higher
resolution than the 1 km? unit used in this study.

The requirement to include consistent spatial datasets available for the entire study area as well as the
unit cell size limits taking our results and applying them to individual mine sites or even locations within
an individual HUC 12 watershed. We feel the best use of our predicted cell locations would be
summarization at the county or larger HUC 10 watershed extent. We encourage caution with any site-
specific application of model results. However, even with these limitations we feel the correlation
between our identified areas and actual planned surface mine permits indicates the value of our
modeled results. We look forward to the analysis and summary of this information to aid in planning for
future surface mine activity.
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Appendices

Random Forests model notes

Revised random

> setl <- re
> set2 <- re
> set3 <- re
> setd <- re
> seth <- re
>

setl$FID_ <-
set2$FID_ <-
set3$FID_ <-
setd$FID_ <-
setb$FID  <-
>

Forests model, October 2013

ad.csv(''set_1.csv')
ad.csv(''set_2.csv')
ad.csv(''set_3.csv'")
ad.csv(''set_4.csv')
ad.csv(''set_5.csv')

NULL
NULL
NULL
NULL
NULL

> raster <- stack(“ash”, “btu”, “distr”, ‘“‘geotype”, “mod”, “popd”, “port”,
“pow”, “sulf”’, "mtr', "eiareg')

Error: unexp

ected input in "raster <- stack(“"

> raster <- stack("ash', "btu", "distr', 'geotype', "mod", "popd", "port',

“pow™, “sulf', "mtr', "eiareg')
raster$geotype <- as.factor(raster$geotype)
setl$geotype <- as.factor(setl$geotype)
set2$geotype <- as.factor(set2$geotype)
set3$geotype <- as.factor(set3$geotype)
set4$geotype <- as.factor(set4$geotype)
set5$geotype <- as.factor(sets5$geotype)

raster$mtr <
setl$mtr <-
set2$mtr <-
set3$mtr <-
setd$mtr <-
sets$mtr <-

raster$eiare
setl$eiareg
set2$eiareg
set3%eiareg
set4$eiareg
set5$eiareg

rf.modell <-
distr + popd
confusion=T,

rf.model2 <-
distr + popd
confusion=T,

rf.model3 <-
distr + popd
confusion=T,

rf.model4 <-
distr + popd
confusion=T,

rf.model5 <-
distr + popd
confusion=T,

- as.factor(raster$mtr)
as.factor(setls$mtr)
as.factor(set2$mtr)
as.factor(set3$mtr)
as.factor(set4$mtr)
as.factor(set5$mtr)

g <- as.factor(raster$eiareg)
<- as.factor(setl$eiaregq)
<- as.factor(set2%eiareg)
<- as.factor(set3%eiareq)
<- as.factor(set4$eiareq)
<- as.factor(setb$eiareq)

randomForest(formula = class ~ sulf +
+ geotype + pow + mtr + eilareg, data=
err.rate=T, ntree=1000)

randomForest(formula = class ~ sulf +
+ geotype + pow + mtr + eilareg, data=
err.rate=T, ntree=1000)

randomForest(formula = class ~ sulf +
+ geotype + pow + mtr + eilareg, data=
err.rate=T, ntree=1000)

randomForest(formula = class ~ sulf +
+ geotype + pow + mtr + eilareg, data=
err.rate=T, ntree=1000)

randomForest(formula = class ~ sulf +
+ geotype + pow + mtr + eilareg, data=
err.rate=T, ntree=1000)

ash +
setl,

ash +
set2,

ash +
set3,

ash +
set4,

ash +
set5,

btu + port
importance

btu + port
importance

btu + port
importance

btu + port
importance

btu + port
importance

+

mod

3
o
o
+

3
o
o
+

3
(@]
o
+

3
o
o
+
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total .model <- combine(rf.modell, rf.model2, rf.model3, rf.model4, rf.model5)

predict(raster, total.model, type="prob",

progress="window", overwrite=TRUE, filename="model2new.img")

Loading required package: tcltk

class : RasterlLayer

dimensions : 1303, 1303, 1697809 (nrow, ncol, ncell)
resolution : 1000, 1000 (X, Yy)

extent

coord. ref.
+y 0=0 +ellps=GRS80 +units=m +no_defs
data source :
names : model2new

values

0,1

(min, max)

> rf.modell$importance

index=1, na.rm=TRUE,

C:\R\Mode IData\DataToRun\model2new. img

mine NOT MeanDecreaseAccuracy MeanDecreaseGini
sulf 0.18024028 0.013024244 0.09648113 594.4364
ash 0.06591107 0.008392967 0.03708831 225.7069
btu 0.12771574 0.021233325 0.07435588 489.8110
port 0.14093593 0.012632069 0.07664152 527.9491
mod 0.13035583 0.016402501 0.07325908 500.0359
distr 0.10268957 0.011684316 0.05708882 462 .0057
popd 0.07792855 0.014670125 0.04623679 397.6203
geotype 0.23150452 0.006925302 0.11899639 733.4620
pow 0.11236325 0.016442982 0.06430293 521.0641
mtr 0.15376096 -0.014349519 0.06954599 192.4539
eiareg 0.19811271 -0.012425979 0.09259842 476.8881
> rf.model2$importance

mine NOT MeanDecreaseAccuracy MeanDecreaseGini
sulf 0.17858038 0.016928788 0.09759745 608.9732
ash 0.05694270 0.007952359 0.03239669 220.9961
btu 0.12259524 0.019760048 0.07107897 488.6975
port 0.13666698 0.009497751 0.07293873 513.3651
mod 0.13120586 0.016999131 0.07398846 503.7707
distr 0.09983573 0.008764772 0.05420070 437.3988
popd 0.07016104 0.012722700 0.04137982 386.7707
geotype 0.22254097 0.016203508 0.11914574 769.9558
pow 0.10916662 0.014356112 0.06165392 509.3383
mtr 0.12826610 -0.008086872 0.05992834 189.1854
eiareg 0.19567671 -0.010277671 0.09248223 494 .6217
> rf.model3$importance

mine NOT MeanDecreaseAccuracy MeanDecreaseGini
sulf 0.18140136 0.016951630 0.09900894 623.7124
ash 0.05830702 0.008105648 0.03315278 224 .5400
btu 0.13019158 0.019050958 0.07451005 501.9171
port 0.13926593 0.012503211 0.07574482 528.3314
mod 0.13436748 0.020026453 0.07706217 528.5690
distr 0.10946632 0.013407648 0.06132853 460.0092
popd 0.07688747 0.012092635 0.04443099 387.3635
geotype 0.22692511 0.013194300 0.11982490 744 .5327
pow 0.10918272 0.016847003 0.06291390 521.1553
mtr 0.13012945 -0.009113428 0.06034056 152.6249
eiareg 0.17833712 -0.010314637 0.08375349 448.7758
> rf.model4$importance

mine NOT MeanDecreaseAccuracy MeanDecreaseGini
sulf 0.17187952 0.015930731 0.09380560 606.8031
ash 0.05930049 0.006997447 0.03310909 222.9184
btu 0.13486632 0.023122427 0.07891794 521.3684
port 0.13987022 0.010337099 0.07501123 534.1551
mod 0.13760857 0.017402620 0.07742640 527.6842

: 589837.8, 1892838, 1094030, 2397030 (xmin, xmax, ymin, ymax)
: +proj=aea +lat _1=29.5 +lat 2=45.5 +lat _0=23 +lon_0=-96 +x_0=0
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distr 0.10220166
popd 0.07871415
geotype 0.21984563
pow 0.10859752
mtr 0.13626252

eiareg 0.17222926

SURFACE COAL MINING PREDICTIVE MODEL

0.013367159
0.012965211
0.015052973
0.015880968
-0.012226856
-0.010683506

> rf.model5$importance

mine
sulf 0.16978617
ash 0.06054685
btu 0.12564723
port 0.13859898
mod 0.13985339
distr 0.11332083
popd 0.07591737
geotype 0.22538338
pow 0.10959507
mtr 0.13199837

eiareg 0.18733137
>
> rf.modell

Call:

randomForest(formula
popd + geotype + pow + mtr + eilareg,
confusion = T, err.
Type of random forest:

Number of trees:
No. of variables tried at each split:

OOB estimate of error rate:

Confusion matrix:

mine
mine 4436 711
NOT 891 4274

> rf.model2

Call:

randomForest(formula
popd + geotype + pow + mtr + eilareg,
confusion = T, err.

OOB estimate of error rate:

Confusion matrix:

mine
mine 4449 698
NOT 904 4261

> rf.model3

Call:

randomForest(formula
popd + geotype + pow + mtr + eilareg,
ntree =
Type of random forest:
Number of trees:
No. of variables tried at each split:

confusion T,

OOB estimate of error rate:

Confusion matrix:
mine
mine 4436 711

err.

NOT
0.014433324
0.008712426
0.023074382
0.013059513
0.016662958
0.013372590
0.013929695
0.018720062
0.016888852

-0.009120261
-0.007122312

class ~

rate = T,

NOT class.error
0.
0.

1381387
1725073

class ~

rate T,

NOT class.error
0.
0.

1356130
1750242

class ~

rate = T,

NOT class.error
0.

1381387

ntree =

ntree =
Type of random forest:
Number of trees:
No. of variables tried at each split:

0.05771412 438.8221
0.04579505 401.7309
0.11726537 744 .2954
0.06218144 526.6931
0.06186401 166.4477
0.08064315 428 .5456

MeanDecreaseAccuracy MeanDecreaseGini
0.09193848 576.2544
0.03457209 219.2102
0.07426369 484.1721
0.07569448 520.5819
0.07813663 513.5633
0.06324147 474.1342
0.04485276 401.8855
0.12182665 759.6918
0.06313905 517.0596
0.06125895 165.0891
0.08984372 488.0499

sulf + ash + btu + port + mod +
data = setl, importance = T
1000)
classification
1000
3
15.54%
sulf + ash + btu + port + mod +
data = set2, importance = T
1000)
classification
1000
3
15.54%

sulf + ash + btu + port + mod +
data = set3, importance = T
1000)

classification

1000

3

15.61%

distr +

distr

distr
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NOT 899 4266 0.1740561
> rf.model4

Call:

randomForest(formula = class ~ sulf + ash + btu + port + mod +

popd + geotype + pow + mtr + elareg,
confusion = T, err.rate = T, ntree =

Type of random forest:
Number of trees:
No. of variables tried at each split:

OOB estimate of error rate:
Confusion matrix:
mine NOT class.error
mine 4409 738 0.1433845
NOT 964 4201 0.1866409
>
> rf.model5

Call:

data = set4,
1000)
classification
1000

3

16.51%

importance

randomForest(formula = class ~ sulf + ash + btu + port + mod +

popd + geotype + pow + mtr + eilareg,
confusion = T, err.rate = T, ntree =

Type of random forest:
Number of trees:
No. of variables tried at each split:

OOB estimate of error rate:

Confusion matrix:

mine NOT class.error
mine 4437 710 0.1379444
NOT 897 4268 0.1736689
plot(rf.modell)
plot(rf.model2)
plot(rf.model3)
plot(rf.model4)
plot(rf.model5)

VVVVYVYV

data = setb,
1000)
classification
1000

3

15.58%

importance

distr +

T’

distr +

T’
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Error

Error
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014

0.18 022

014
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Error
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rf.model4
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